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Abstract--An integral approximation solution of heat transfer in the grinding process is presented in this 
paper. Heat transfer models for the abrasive grain, fluid and workpiece were developed by using the integral 
approximation method. For the case in which film boiling does not occur in the grinding zone during the 
grinding process, the workpiece background temperature rise calculated by the present model agreed very 
well with previous theoretical analysis. The present model can also correctly simulate the grinding process 
when film boiling occurs in the grinding zone. Furthermore, a simplified model, which is applied only for 
cases where film boiling does not occur in the grinding zone, has also been developed, Copyright © 1996 

Elsevier Science Ltd. 

1. INTRODUCTION 

In any grinding process, thermal damage is of serious 
concern when considering the quality of the final 
workpiece. In comparison with other machining pro- 
cesses, such as milling and turning, the grinding pro- 
cess requires a very high energy input. This energy is 
dissipated as heat in the grinding zone [1]. Heat trans- 
fer in grinding has been intensively studied by many 
researchers and many papers have been published. 
The earlier works have been compiled in detailed 
reviews by Snoeys et al. [2] and Malkin [3]. All of the 
early studies of heat transfer in grinding processes 
addressed the workpiece only, with appropriate ther- 
mal boundary conditions at its surface. The fraction 
of total grinding power that enters the workpiece had 
to be assumed. 

Lavine and Jen [4, 5] presented a model to simulate 
the heat transfer to the workpiece, wheel, and fluid, 
which eliminated the need to specify the fraction of 
the total grinding power that enters the workpiece or 
the convection heat transfer coefficient of the grinding 
fluid. They assumed that the heat flux into the work- 
piece, wheel, grains and fluid were uniformly dis- 
tributed in the grinding zone. However, this assump- 
tion would result in a contradiction of the temperature 
equations. They resolved this problem by allowing the 
heat flux into the grains, q',', to vary in the grinding 
zone, but this approximation resulted in an error in 
the temperature distribution. 

This model was modified by Jen and Lavine [6] to 
allow the heat flux to vary with location. The grinding 
fluid boiling and workpiece burn were also considered 
in ref. [6]. The drawback of Jen and Lavine's work [6] 
is that the heat transfer coefficient for various 
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materials used were for uniform heat flux. When film 
boiling occurs in the grinding zone, the heat flux into 
the grinding fluid is suddenly reduced to zero. The 
heat fluxes into the workpiece and abrasive grain have 
to be adjusted in order to satisfy the energy balance 
in the grinding zone, Therefore, the heat flux into 
various materials is significantly changed when the 
film boiling occurs in the grinding zone. However, the 
heat transfer coefficient for uniform heat flux was still 
employed by Jen and Lavine [6] to study the grinding 
process with film boiling. Thus, the physical model of 
ref. [6] needs to be verified by other models. 

Jen and Lavine [7] proposed an improved model, 
which accounted for the variation of heat flux in the 
grinding zone by using Duhamel's theorem. However, 
film boiling in the grinding process was not considered 
in their paper. In order to obtain the heat flux and 
temperature distribution in the grinding zone, an inte- 
gral~:lifferential equation had to be solved, which 
required significant computer time since the grid num- 
ber was 40 001. Their results showed that the physical 
model proposed by Jen and Lavine [6] was accurate 
enough for the uniform grinding power input. 

In this paper, a new model to simulate the heat 
transfer to the workpiece, wheel, and fluid will be 
presented. The solution is based on the direct relation 
between temperature and arbitrarily varied heat flux, 
which can be obtained by an integral approximated 
solution. The temperature and heat flux distribution 
in the grinding zone with and without film boiling will 
be presented. 

2. PHYSICAL MODEL 

The physical model and the coordinate system for 
a typical grinding wheel and workpiece are shown in 
Fig. 1. The heat flux and temperature distribution in 
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NOMENCLATURE 

depth of cut [m] v,, 
fractional grain/workpiece contact x 
area 
individual grain/workpiece contact z 
area [m 2] 
width of grinding zone [m] 
constant defined by equation (22) 
specific heat [J kg-1 ~C i] 
wheel diameter [m] 
thermal conductivity [W m 2 C ]] 
grinding zone length [m] 
width of individual grain heat source 
[m] 
heat flux [W m-2] f 
radial coordinate in an abrasive grain g 
[m] grind 
radius of grain/workpiece contact area s 
[m] w 
radius of thermal boundary layer Ira] wb 
wheel velocity [ms -~] wg 

workpiece velocity [m s ~] 
distance from beginning of grinding 
zone [m] 
coordinate in an abrasive grain [m]. 

Greek letters 
thermal diffusivity [m 2 s i] 

p density [kg m ~] 
q variable defined by equation (13) 
0 surface temperature rise relative to 

ambient temperature. 

Subscripts 
fluid 
grain 
grinding power 
surface 
workpiece 
workpiece background 
workpiece under grain. 

Vs ~.------_ 

vw 

workpiece 
/ 

Fig. 1. Physical model of grinding. 

the grinding zone, which is the contact area of wheel 
and workpiece with length l and width b, will be studied 
in this paper. Many grains of the wheel surface cut 
into the workpiece with a very high speed and a lot of 
heat is generated in the grains-workpiece interface 
and their vicinity. In order to simplify the problem, it 
is assumed that all of the heat is generated at the 
grain-workpiece interface and that the heat generated 
in the vicinity (such as grain-chip interface, and the 
shear plane between the workpiece and chip) can be 
neglected [4-7]. 

The heat generated at the grain-workpiece inter- 

face, qgrind, is assumed to be uniform in the present 
study and will conduct into the workpiece or grain. 
Therefore, 

t l  r t  te qgr,~d = qwg (x) + qg (x) (1) 

where, q'~g(x) and qg(X) are the heat fluxes into the 
workpiece and grain, respectively. It is noticed that 
the heat flux into the workpiece and grain vary with 
the location in the grinding zone although q~r~nd is 
uniform [6]. 

The heat flux into the workpiece, q~g(X), will he 
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Fig. 2. Heat transfer in an abrasive grain. 

tion (3) into equation (4), it can be re-written as fol- 
lows 

eo. =8 e( a% 
Ox v,r 2 0r r Or/" (5) 

It is noticed that equation (5) is the heat conduction 
equation in the spherical coordinate system. The 
initial condition and the boundary conditions of  equa- 
tion (5) can be obtained by re-writing those of equa- 
tion (4), which can be found in ref. [8]. They can be 
expressed as 

08 = 0  x = 0  (6) 

k dog 
-- g ~ r  =q'~(x) r = r o  ( 7 )  

divided into two parts: one part remains in the 
workpiece ; the other part is removed by the grinding 
fluid. Assuming that the fractional grain-workpiece 
contact area is A, we can write 

Aq~8(x) = q~b (X) + (1 -- A)q'f'(X) (2) 

where q"b(x) and q~'(x) are the heat flux that remains 
in the workpiece and the heat flux into the grinding 
fluid, respectively. 

Heat transfer to the abrasive grain, the fluid and 
the workpiece will be studied separately. These models 
will then be coupled in order to obtain the heat flux 
and temperature distributions in the grinding zone. 

2.1. Heat transfer to the abrasive grain 
Consider an individual abrasive grain moving along 

the workpiece with velocity Vs. The abrasive grain can 
be considered as a semi-infinite frustum of  cone with 
a cross-sectional area where 

Ac = nr 2 = n(ro + 2z) 2 (3) 

where ? --- dr/dz ~ 1 [4]. The heat flux into the grain 
at the grain-workpiece surface is denoted as qg. The 
schematic diagram of the heat transfer in an abrasive 
grain is shown in Fig. 2. In the cylindrical coordinate 
system fixed to the grain, the grain temperature 
depends on r, z and time t since the grain is in contact 
with the workpiece. Since the thermal conductivity of 
the grain is much larger than that of the grinding fluid, 
it is assumed that the heat that enters the grain simply 
conducts further into the grain without any heat being 
removed by the fluid. Therefore the grain has a uni- 
form temperature across cross-sectional area [4, 8]. It 
is noticed that the time that the grain is in contact 
with the workpiece can be expressed as t = x / v ,  and 
therefore the energy equation for the grain can be 
expressed as 

OOs ~8 0 /Ac O08k 
AcVs (4) 

where 0 8 is the grain temperature rise relative to the 
initial grain temperature at x = 0. Substituting equa- where 

Og finite, r ~ ~ .  (8) 

The physical problem described by equations (5)- 
(8) can be considered as a heat conduction problem 
in a spherical shell with an inner radius, r0, and an 
infinite outer radius. This problem is a non-linear heat 
conduction problem because equation (7) is a non- 
linear boundary condition. An integral approxi- 
mation method will be employed to solve this 
problem. 

Assuming that the thermal boundary thickness is 
ra-r0,  then integrating equation (5) on the interval 
(ro, ra), and using the boundary condition, equation 
(7), the integrated energy equation of the grain will 
become 

O O g  . 2 qgro (9) 
ax (pc~hv, 

f 
r a 

Og = r20s dr. (10) 
r o 

The temperature distribution in the grain is 
assumed to be a cubic polynomial function. The con- 
stants in the cubic polynomial function can be deter- 
mined by using equations (5)-(8). Finally, the tem- 
perature distribution can be expressed as 

q,,r 2g ( ~ ) r  6 -- r 3 

0g = (11) 

kg 1 ~ r 

Substituting equation (l l) into equation (9), we 
can obtain a differential equation about the thermal 
boundary layer radius, ra. 

d~t/2/4+r/3/20 ] %qs 

dx L t /+3 qg -- r2v~ 
(12) 
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r~ 
, = - -  - 1 .  (13) 

F0 

An iteration equation o f ,  can be obtained by inte- 
grating equation (12) 

= [  -20(0+3) % I ' q ~ d x ]  t2 (14) 

The grain temperature at the grain-workpiece surface 
can be expressed as 

q~rll q (15) 
0g.~= kg 0+3" 

2.2. Heat transJer in grinding fluid and workpiece 
The grinding fluid is introduced to the grinding zone 

and is distributed throughout the grinding zone by the 
wheel. Since the contact area between the workpiece 
and the grain is typically only a few percent of the 
grinding zone, the workpiece is covered by the grind- 
ing fluid over most of the grinding zone. It can be 
assumed that the grinding fluid fills the space around 
the abrasive grain to a depth that is larger than the 
thickness of the thermal boundary layer [9]. There- 
fore, the grinding fluid flow over the workpiece surface 
can be considered as slug flow with a uniform velocity, 
v~. Finally, the grinding fluid can be modeled as a 
moving semi-infinite solid with a variable heat flux, 
q~', at its surface. The governing equation and its initial 
condition and boundary conditions are similar to ref. 
[9] but the heat flux into the grinding fluid depends 
on the location in the grinding zone. The temperature 
rise of the grinding fluid, Of,~, can be obtained by using 
an integral approximation solution [10]. 

4 ~ , I 2 

(16) 

The temperature distribution in the workpiece is 
caused by many individual grains generating heat at 
discrete points of the workpiece surface. A simpler 
method used by previous researchers [4-7] is to con- 
sider the temperature distribution to be the super- 
position of a background temperature rise, 0~b, that 
is caused by a uniform heat flux acting over the entire 
grinding zone, and an individual grain temperature 
rise, 0~g, which applies only underneath a single grain. 
This method will be used here, however, the heat flux 
into the workpiece, q~b, is a function of the location 
in the grinding zone instead of a constant. 

Since the workpiece moves with a velocity, v~, the 
heat transfer into the workpiece background can be 
considered as a heat conduction problem in a moving 
semi-infinite solid. The governing equations and the 
solution procedure of the problem are similar to the 
heat transfer in the grinding fluid. Therefore, the back- 
ground temperature rise of the workpiece can be 
expressed as 

4 , ' dx] 
0~,~, = ~3(kpcp)wVwqwb fo qwb ~"2 q'b. (17) 

An individual grain is modeled as a band heat 
source with width lg, causing a heat flux, q~g, into 
workpiece surface [5]. It is noticed that the individual 
grain heat sources modeled here are not circular which 
are used in the analysis of heat conduction in an abras- 
ive grain. The workpiece moves with a velocity 
t,~-v,~ ~ t:g, relative to an individual grain surface. 
The average workpiece surface temperature rise 
underneath a grain due to an individual heat source 
can be expressed as follows 

r 
" ~z(kpcp)wV~ q~g" (lg) 

Although the heat flux, q~.g, is assumed to be uni- 
form by Lavine and Jen [5], equation (18) is also valid 
when the heat flux is a function ofx  [7]. 

2.3. Coupling the model 
The individual heat transfer models for abrasive 

grain, fluid and workpiece have been developed. In 
order to obtain the heat flux and temperature dis- 
tribution, the above separate models have to be 
coupled by requiring that the surface temperature 
match. In other words, at a point on the workpiece 
exposed to the fluid, the workpiece background tem- 
perature rise, Ow~.s, must equal the grinding fluid tem- 
perature rise, Of.s 

q'£b d x  " qwb 3(kpc o Vwq% 

[ 4 {,, ql,2 
= .  _ i ,,dx / [3(kpcp)#,q~,j, q~ j q~'. (19) 

Equation (19) can also be written as 

L q~' q~'dx 
(kpcp)fV~ (20) 

• x - (kpcplwvw f 
q"b | q~b dx 

3 o 

It is observed that the right-hand side of equation 
(20) does not depend on the grinding zone location 
and is a constant for a specific case. The value of the 
constant depends on the properties of grinding fluid 
and workpiece, and the velocity of the wheel and 
workpiece. In order to maintain the left-hand side of 
equation (20) as a constant, the following equation 
has to be satisfied. 

q~' 
- c (21) 

q~b 

where the constant, C, is 

C=F (-kp%)fv~ l'  : (22) 
k ( k p ¢ O w V w  I • 
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Equation (21) confirms the relation between q7 and 
q"b obtained by Duhamel's theorem as found by Jen 
and Lavine [7]. 

At a point underneath a grain, the grain tem- 
perature rise, 0g.s, must equal the sum of the workpiece 
background temperature rise, 0wb,s, and the workpiece 
temperature rise due to an individual grain 

[ 4 f :  7 
~/~kg ~ qg = 3 (kpcp)wVwq~v u qwb dx  qwb 

2[- 41g -]1j2 
+ q:'  (23  

It is noticed that different geometries of grain- 
workpiece contact areas were assumed in this study : 
a circle of radius r0 and a band of width lg. The relation 
between r0 and lg is [5] 

l 2 = nr 2 (24) 

and this relation has been used in equation (23) to 
express the grain temperature 0g,s. The parameter r/in 
equation (23) can be obtained by substituting equa- 
tion (24) into equation (14) to obtain the following 

[-200/+3) n% ('~ ,, 7 "2 
q = [  q - ~  q ~ J 0 q g d x J  . (25) 

Substituting equations (1), (2) and (21) into equa- 
tions (23) and (25), an equation representing the heat 
flux into the workpiece, q~b, can be obtained 

,1 ,, / ~ I + ( 1 - A ) C  

I - 1~ rl 2/" 4l~ ,~1/2-] 

[ 4 ; : 7 }  + 3(kp%)wV~q;u q;b dx  (26) 

where 

; ] rt . 1/2 
qgrind X - -  q,b dx 

20(q + 3) n% . . . .  

~/= q+5  12gv~ q~rindl%-(~--A)Cq"b]" ( 2 7 )  

It is noticed that the heat flux into the workpiece, 
q"b, is the only unknown variable in equation (26). 
Since q"b also appears on the right-hand side of equa- 
tion (26), iteration is needed during the solution pro- 
cedure. 

After the distribution of q~,b is obtained, the dis- 
tribution of the other heat fluxes can be obtained by 
solving equations (1), (2) and (21). The workpiece 
background temperature rise, 0wb.s, which is a most 
important parameter from the viewpoint of engin- 
eering, can be calculated from equation (17). 

It should be pointed out that equation (26) can also 

be used to simulate the heat transfer in the grinding 
process with film boiling in the grinding zone. When 
film boiling occurs, the grinding fluid and the work- 
piece are separated by a vapor film. Therefore, the 
heat amount removed by the grinding fluid can be 
neglected [4-6]. Equations (26) and (27) can be easily 
applied to simulate the grinding with film boiling by 
setting the constant, C, to zero when the workpiece 
background temperature is greater than the boiling 
point of the grinding fluid. 

3. RESULTS AND DISCUSSION 

The present model will be used to predict the heat 
flux and temperature distributions in the grinding 
zone. The thermophysical properties of the abrasive 
grains (A1203), workpiece (steel), and grinding fluid 
(water) can be found in refs. [4-7]. The grinding power 
input, q~,a (x) is assumed to be uniform in the grinding 
zone. The ambient temperature is taken to be 25°C. 

3.1. The grinding process without f i lm boilin 9 
The results obtained by the present model are com- 

pared to the results of Jen and Lavine's model [6, 7] for 
creep feed grinding. Figure 3 shows the comparison of 
the workpiece background temperature rise obtained 
by using the present integral approximation solution 
and Jen and Lavine's model [6, 7]. The creep feed 
grinding parameters in Fig. 3 are the same as ref. [7] 
for convenience of comparison. The grinding heat 
flUX, qgrind, is held constant at 6.5 x 108 W m 2. The 
wheel and workpiece speeds are 18 m s 1 and 0.6 
mm s- ' ,  respectively. The fractional grain-workpiece 
contact area, A, is taken to be 0.01. The length of the 
grinding zone for creep feed grinding is l = 17.5 mm. 
The effect of the grid size on 0wb.s is very small and 
Fig. 3 shows that the workpiece background tem- 
perature rise is the result ofAx = 0.01 mm (grid num- 
ber is 175). Although a finer grid size (Ax = 0.001 
mm) is also used to solve equation (26), the maximum 
difference between the two grid sizes is less than 
0.02°C. It can be seen that the agreement between the 
results of the present model and previous models are 
very good. The workpiece background temperature 
rise, 0wb,s of the present model and that of ref. [7] 
shows a maximum difference of less than 3°C. The 
difference between the present result and the result of 
ref. [6] is smaller than 2°C. Figure 4 shows the various 
heat flux distributions for creep feed grinding. The 
parameters in Fig. 4 are the same as that of Fig. 3. As 
can be seen in Fig. 4, for creep feed grinding with 
uniform grinding power input, the various heat fluxes 
are almost unchanged except for the beginning of the 
grinding zone. 

3.2. A simplified model 
The grid number of 175 used in the calculation is 

much smaller than the grid size of 40 001 used by Jen 
and Lavine [7]. Therefore, the computer time used in 
the present study is much less than ref. [7]. However, 
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an iteration is still needed during the solution pro- 
cedure of equation (26) because q~b appears on the 
right-hand side of equation (26). An integration of 
q~b has to be calculated during the solution procedure. 
It can be seen from Fig. 4 that q~  is almost unchanged 
in the grinding zone. A simplified model is therefore 
proposed according to this behavior of q~.b. The main 
idea of the simplified model is assuming q~b is a con- 
stant when integrating q::b in the right-hand side of 
equation (26). Equations (26) and (27) can be sim- 
plified as follows due to this assumption : 

,~kg .+3 ,/~ A L , / ~ . + 3  

2 /  4lg \"27 F 4x ]"2} (28) 

F200/+ 3) ~gX T :2 

"=L ,7+s tg~J 
(29) 

It is observed that q ~ b  does not appear on the right- 
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hand side of equation (28). Therefore, iteration is 
no longer needed during the solution procedure of 
equation (28) and a closed form solution of q~,b is 
obtained. After q~b is obtained, the workpiece back- 
ground temperature, 0"b,s, can be obtained by the 
following equation. 

F 4x 0wb.s = " " (30) L3(kpcp)wVw] qwb. 

It should be noted that equation (30) is obtained 
by assuming a uniform q"b when integrating q"b in 
equation (17). 

Figure 5 shows the comparison of the workpiece 
background temperature rise and abrasive grain tem- 
perature rise obtained by the different methods. It can 
be seen that the results obtained by the simplified 
model agree very well with the results obtained by the 
model described in the previous section of this paper. 
Figure 6 shows the comparison of various heat fluxes 
obtained by the two different models. It can be seen 
that the differences between the results obtained by the 
two models are hardly noticeable in Figure 6 except at 
the beginning of the grinding zone. Therefore, for 
creep feed with uniform heat input, the simplified 
model is a very reasonable substitute of the model 
proposed in the previous section. 

The present simplified model is then used to simu- 
late the conventional grinding process, in which the 
workpiece speed is faster but the length of grinding 
zone is much shorter. Figure 7 shows the comparison 
of workpiece temperature rise, 0wb,s, obtained by the 
present simplified model and Jen and Lavine's model 
[6]. The grinding power input, q~,d, is held at a con- 
stant 1.4 x 109 W m -2. The wheel and workpiece speed 
are 20 m s -] and 0.033 m s - '  respectively. It can be 
seen that the workpiece background temperature rise 
obtained by the present simplified model is slightly 

lower than that obtained by Jen and Lavine's model 
[6], but the maximum difference between the two mod- 
els is less than 2°C. Therefore, the simplified model is 
also a useful tool in simulating conventional grinding 
for uniform grinding power input. 

3.3. The grinding process with film boilin 9 
In the case of larger grinding power inputs, the 

workpiece background temperature will be larger than 
the boiling point of the grinding fluid and flow boiling 
will occur in the grinding zone. The workpiece back- 
ground temperature is monotonically increased by the 
increasing of x. Therefore, the heat transfer mech- 
anism of the fluid in the grinding zone can be a com- 
bination of the single phase forced convection in the 
beginning and flow boiling in the end. It is well known 
that the flow boiling has two different states : nucleate 
boiling and film boiling. The result of ref. [6] showed 
that the transition from single phase forced convection 
to film boiling is very fast and the effect of the nucleate 
boiling can be neglected. It can be assumed that the 
heat transfer mechanism in the grinding zone is a 
combination of the single phase forced convection and 
the film boiling. The transition point from the single 
phase forced convection to the film boiling is a point 
that its temperature reaches that of the critical work- 
piece temperature. This temperature has been deter- 
mined by ref. [6] and its value was 130°C. As men- 
tioned in the previous section, the constant, C, in 
equations (26) and (27) can be set to zero after the 
transition point. 

Figure 8 shows the heat flux distribution in the 
grinding zone for creep feed grinding when film boil- 
ing occurs in the grinding zone. It can be seen that 
heat flux into the grinding fluid is suddenly reduced 
to zero and the heat flux into the workpiece is suddenly 
increased. The other heat fluxes in Fig. 8, such as q"g 
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and q~, also have discontinuous changes at the tran- 
sition point. Therefore, in the case of film boiling, heat 
fluxes into various materials no longer can be assumed 
to be uniform even though the grinding power input 
is uniform. The physical model proposed by Jen and 
Lavine [6], which employed the heat transfer 
coefficient for uniform heat flux, is not suitable for the 
case of film boiling occurring in the grinding zone. 
Figure 9 shows the workpiece background tem- 
perature for creep feed grinding when film boiling 
occurs. As can be seen in Fig. 9, the physical model 
proposed by Jen and Lavine [6] obtained higher work- 
piece background temperatures when film boiling 
occurred. The difference of the workpiece background 

temperature is very large when film boiling begins to 
occur but it becomes smaller at the end of the grinding 
zone. The present physical model can correctly handle 
the variation of heat fluxes (even for discontinuous 
variations) by employing the integral approximation 
method. Therefore, the present model is a very useful 
tool in simulating the grinding process with film 
boiling. 

4. C O N C L U S I O N S  

Heat transfer in the grinding process has been inves- 
tigated in this paper. Heat conduction models in 
abrasive grain, grinding fluid and workpiece are 
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Fig. 8. Heat flux distribution for creep feed grinding when film boiling occurs. 
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Fig. 9. Workpiece background temperature for creep feed grinding when film boiling occurs. 

developed by employing integral approximation 
methods and coupled by satisfying the requirement 
matching temperatures at the workpiece-fluid inter- 
face and grain-workpiece interface. The heat transfer 
model developed in the present paper overcame the 
contradiction of temperature match in refs. [4, 5] and 
is simpler than the model of ref. [7]. A simplified 
model is proposed to simulate the heat transfer in the 
grinding process with uniform grinding power input. 
The agreement of the workpiece background tem- 
perature rise obtained by the physical models pre- 
sented in the present paper and Jen and Lavine's 
model [6, 7] are very good. The present model can 
also be used to simulate the grinding process when the 

film boiling occurs in the grinding zone, in which the 
heat fluxes have discontinuous changes. 
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